
BNF Assignment

Learning Abstract
In this problem set I will focus on BNF (Backus Naur Form), a formalism for

notating languages originally created for describing Algol. In this assignment I will write
both grammars to describe languages as well as parse trees to represent specific
examples of the languages. All parse trees for this assignment were drawn in OneNote.

Problem 1 - RB4B
RB4B is a language consisting of the set of all strings composed of a number of

preset strings (listed below) in parentheses ending in either (-) or (. +).

Preset string options
● (-)
● (- -)
● (- . .)
● (. - .)
● (. . -)
● (. +)

Some examples of sentences in RB4B are
● (-)
● (. +)(- -)(. +)
● (-)(-)(-)(. +)

Task 1 - write a BNF grammar description of RB4B

1 <RB4B-sent> ::= <dbd-chars> <end>
2 <dbd-chars> ::= <empty>
3 <dbd-chars> ::= <RB4B-char> <dbd-chars>
4 <RB4B-char> ::= (-)
5 <RB4B-char> ::= (- -)
6 <RB4B-char> ::= (- . .)
7 <RB4B-char> ::= (. - .)
8 <RB4B-char> ::= (. . -)

9 <RB4B-char> ::= (. +)
10 <end> ::= (-)
11 <end> ::= (. +)

Task 2 - Draw a parse tree for (-)

Task 3 - draw a parse tree for
(. . -)(. . -)(. +)(. - .)(. +)

Problem 2 - SQN (Special Quaternary Numbers)
SQN is a language of all the quaternary numbers which contain no leading zeros

(except for the lone digit 0) composed only of the digits 0, 1, 2, 3 . The numbers
also cannot have two of the same digits adjacent to another.

SQN examples
● 0
● 102030201
● 102323232301010
● 12321

SQN non-examples
● 0123123123
● 11
● 12301233
● 1234

Task 1 - write a BNF grammar description of SQN

1 <SQN-numb> ::= 0
2 <SQN-numb> ::= <nzd>

3 <nzd> ::= 1 <nod>
4 <nzd> ::= 2 <nwd>
5 <nzd> ::= 3 <ntd>
6 <nzd> ::= <empty>

7 <nod> ::= 0 <nzd
8 <nod> ::= 2 <nwd
9 <nod> ::= 3 <nwd
10 <nod> ::= <empty>

11 <nwd> ::= 0 <nzd>
12 <nwd> ::= 1 <nod>
13 <nwd> ::= 3 <ntd>
14 <nwd> ::= <empty>

15 <ntd> ::= 0 <nzd>
16 <ntd> ::= 1 <nod>
17 <ntd> ::= 2 <nwd>
18 <ntd> ::= <empty>

I left the definitions on separate lines for this BNF. This is helpful when
referencing rules as you can refer to the rule by line number.

Task 2 - Draw a parse tree for 0

Task 3 - Draw a parse tree for 132

Task 4 - Explain why a parse tree cannot be drawn for 1223
A parse tree for 1223 would run into an issue following the first two.

Because twos are defined as being followed by a <nwd> or non two digit there is
no way that the <nwd> could be a two it must be a 0,1,or 3 followed by its
respective non digit non determinate.

Problem 3 - IR123
The language IR123 is composed of all strings formed from the following

sequences of bracketed letters. Additionally two adjacent strings cannot be the same
occurrence of the predetermined strings.

Predetermined Strings
● [C]
● [D C]
● [B C]
● [E D C]
● [F E C]
● [G F C]

Examples of IR123
● [D C]
● [C][D C][F E C]
● [C][D C][C] [D C][C] [D C][C] [D C]

Examples of IR123
● [D C B]
● [C][D B C][F E C]
● [C][D C][C][C]

Task 1 - write a BNF grammar description of IR123

1 <IR123-sent> ::= <s-char>
2 <s-char> ::= <c-char> | <d-char> | <b-char> |

<e-char> | <f-char> | <g-char>
3 <c-char> ::= [C] <nc-char>
4 <d-char> ::= [D C] <nd-char>
5 <b-char> ::= [B C] <nb-char>
6 <e-char> ::= [E D C] <ne-char>
7 <f-char> ::= [F E C] <nf-char>
8 <g-char> ::= [G F C] <nb-char>
9 <nc-char> ::= <d-char> | <b-char> | <e-char> |

<f-char> | <g-char>

10 <nd-char> ::= <c-char> | <b-char> | <e-char> |
<f-char> | <g-char> | <empty>

11 <nb-char> ::= <c-char> | <d-char> | <e-char> |
<f-char> | <g-char> | <empty>

12 <ne-char> ::= <c-char> | <d-char> | <b-char> |
<f-char> | <g-char> | <empty>

13 <nf-char> ::= <c-char> | <d-char> | <b-char> |
<e-char> | <g-char> | <empty>

14 <ng-char> ::= <c-char> | <d-char> | <b-char> |
<e-char> | <f-char> | <empty>

For this BNF grammar I did not leave every rule to its own line. This was done
both to save space (as each condense line holds 6 rules) as well as to showcase the
different ways a BNF Grammar can be written. Regardless it should be noted that lines
2, and 9-14 each contain 6 rules while the others each hold one.

Task 2 - Draw a parse tree for [C]

Task 3 - Draw a parse tree for
[C][E D C][F E C][B C]

Task 4 - Explain why a parse tree cannot be drawn for
[D C][B C][B C][C]

This parse tree runs into the same issues from Task 4 from the SQN
language. After [B C] a <nb-char> must follow. Since the <nb-char>
cannot parse into [B C] a parse tree cannot be created.

Problem 4 - BXR
BXR is a logical language created using only the constants #t and #f as well as

the operators and, or, and not.

Task 1 - write a BNF grammar description of BXR

1 <bxr-sent> ::= <constant>
2 <bxr-sent> ::= <express-list>
3 <constant> ::= #t
4 <constant> ::= #f
5 <express> ::= <and-ex>
6) <express> ::= <or-ex>
7) <express> ::= <not-ex>
8) <express> ::= <constant>
9) <express-list> ::= <empty>
10) <express-list> ::= <express> <express-list>
11) <and-ex> ::= (and <express-list>)
12) <or-ex> ::= (or <express-list>)
13) <not-ex> ::= (not <constant>)

Task 2 - draw a parse tree for (or #t)

Task 3 - draw a parse tree for (and (not #t) #f)

Problem 5 - Color Fun (CF)
CF is a language in racket used to store and display colors within the interactions

pane of Dr. Racket.

Task 1 - write a BNF grammar description of CF

1 <cf> ::= <fxn>
2 <fxn> ::= <desc>
3 <fxn> ::= <show>
4 <fxn> ::= <add>
5 <fxn> ::= <colors>
6) <fxn> ::= <exit>

7) <desc> ::= ? describe <color-name>
8) <color-name> ::= red | light red | c1 | c2 | c3 |

<string>
9) <string> ::= a string as racket describes strings

(see racket wiki)

10) <show> ::= ? show <color-name>

11) <add> ::= ? add (<rgb-v> <rgb-v> <rgb-v>
<opac-v>) <color-name>

12) <rgb-v> ::= int range 0-255
13) <opac-v) ::= <empty>
13) <opac-v> ::= int range 0-255

14) <colors> ::= ? colors

15) <exit> ::= ? exit

This BNF grammar does not state exact tokens and relies that the reader
knows what an integer and string are in the context of Racket. Integers are
common throughout most programming languages and are left without further
explanation while string is left with a link to the racket wiki as programming
languages often handle strings slightly differently.

https://docs.racket-lang.org/guide/strings.html

Task 2 - draw a parse tree for- colors

Task 3 - draw a parse tree for show purple

Task 4 - draw a parse tree for
add (100 220 170) favorite-color

Problem 6 - Color Fun (CF)
Explain BNF in natural language as if you were trying to teach a freshman

computer science student.

Backus Naur Form (BNF) is a standardized form for describing programming
languages. Creating a standard form helps ensure that any programmer can read the
BNF of a language and not only understand the BNF description, but also be able to
grasp the language. It takes the form of defining non-terminals (similar to variables in
math) and tokens (constants). With the non-terminals eventually being defined in terms
of specific tokens. The end goal being that one can draw a line through all of the types
of non-terminals until you reach pure tokens for any sentence of the language.

